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Abstract
A class of quantum field theories invariant with respect to the action of an
odd vector field Q on a source supermanifold � is considered. We suppose
that Q satisfies the conditions of one of the localization theorems (Szabo R
1996 Equivariant localization of path integrals Preprint hep-th/9608068). The
Q-invariant sector of a field theory from the above class is then shown to be
equivalent to the quantum field theory defined on the zero locus of the vector
field Q.

PACS number: 11.30.Pb

1. Introduction

The aim of the present paper is to connect the phenomenon of dimensional reduction in
supersymmetric field theories with localization of certain integrals over supermanifolds. Let
us start with the explanation of the meaning we assign to the terms ‘dimensional reduction’ and
‘localization’ (each of these terms is used in the literature in quite a few different contexts).
By dimensional reduction, we will understand the fact of an exact equivalence between a
quantum field theory and another quantum field theory defined on the submanifold of the
source manifold of the original theory. An example of such a phenomenon is provided by the
celebrated Parisi–Sourlas model [5] which also served as a main motivation for the present
work. Recently, the Parisi–Sourlas method has been used to compute exact scaling functions
in certain classical statistical systems, namely self-avoiding walks and branched polymers [3].
The generalization of the Parisi–Sourlas dimensional reduction argument presented below
might prove useful in the similar study of constrained classical statistical systems.

Localization of an integral over a (super)manifold� to a subset R ⊂ � means more or
less that this integral is independent of the values of the integrand on the complement to the
arbitrary neighbourhood of R in�. In what follows, we will be using the notion of localization
in the even more restricted sense. It is well known that localization is usually related to the
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presence of some odd symmetry of the problem. So let Q be an odd vector field on �. This
means that Q is a parity-reversing derivation on the Z2-graded algebra of functions on �. We
say that Q satisfies the conditions of some localization theorem if for any Q-invariant function
f on �, ∫

�

dV · f =
∫
RQ

dvQf |RQ (1)

where dV is a fixed volume element on�; the zero locus of Q is supposed to be a submanifold
of � and is denoted by RQ; dvQ stands for the volume element on RQ depending on dV,Q,
but not f .

An exposition of different localization techniques in the context of quantum field theory
can be found in [11]. Most of the localization theorems discussed in this paper (such as the
Duistermaat–Heckmann theorem, Berline–Vergne theorem, Mathai–Quillen formula) state
localization of integrals over supermanifolds under certain compactness conditions imposed on
the anticommutator {Q,Q}. In [10] we studied such localization statements in the framework
of supergeometry. We managed to prove a general localization theorem which includes all
localization theorems mentioned above as its particular cases. The main result of [10] can be
formulated as follows. Let Q be an odd vector field on � which preserves a volume element
dV on�. Suppose thatQ2 = 1

2 {Q,Q} belongs to a Lie algebra of a compact subgroup of the
group of diffeomorphisms of�. Then under some additional conditions of non-degeneracy of
Q the integrals of Q-invariant functions over� localize to the zero locusRQ of the vector field
Q. In other words (1) holds with dvQ determined by dV and the matrix of the first derivatives
of the vector field Q at RQ.

To conclude the introduction, let us formulate and prove another localization theorem
which will be useful in the analysis of dimensional reduction of Parisi–Sourlas-type models.
This theorem can be viewed as a supersymmetric version of the localization formula for the
functional of isometry generators, see [11], paragraph 4.6. The explanation of basic notions
of supergeometry which will be used below can be found in [9].

Theorem. Let � be a compact supermanifold equipped with an even metric g. Suppose Q
is an odd vector field on � preserving the metric, i.e. LQg = 0. Suppose that vector field
Q2 is non-degenerate in the vicinity of its zero locus RQ2 . Suppose also that odd and even
codimensions of RQ2 in � coincide. Then for any Q-invariant function f on �∫

�

dVf =
∫
R
Q2

dvQf |R
Q2 (2)

where dV is a volume element on � corresponding to the metric g and dvQ is a volume
element on RQ2 determined completely by g and Q.1

Proof. Let {zα} be a set of local coordinates on �. The parity of the αth coordinate
will be denoted by εα . In these coordinates Q = Qα(z) ∂

∂zα
,Q2 = (Q2)α(z) ∂

∂zα
, where

(Q2)α = Q(Qα(z)). We will write the metric in the form g = gαβ(z)δz
αδzβ . Consider now

an odd function σ on � defined in the local coordinates by the following expression:

σ(z) = 1

2

∑
α,β

(−1)εα+εβ gαβQ
α(z)(Q2)β(z). (3)

It is easy to verify that the right-hand side of (3) does not depend on the choice of
local coordinates, so that σ is indeed a function on �. A direct calculation shows that
1 Initially this theorem was formulated and proved for the linear superspaces. Its present form benefits from the
collaboration with A S Schwarz.
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σ is Q2-invariant, i.e. Q2σ = 0. Also one finds that Qσ(z) = gαβ(Q
2)α(z)(Q2)β(z) ≡

〈Q2(z),Q2(z)〉, where 〈 , 〉 denotes the pairing in the fibres of the tangent bundle over �
induced by the metric g.

Another computation shows that RQ2 is a subset of the critical set of Qσ , i.e.
∇Qσ |R

Q2 = 0. It follows from non-degeneracy of Q2 in the vicinity of RQ2 that RQ2 is
a non-degenerate critical set. The last means that the Hessian of Qσ has the maximal rank at
each point of RQ2 .

Our aim is to compute
∫
�

dVf , where Qf = 0. The fact that the metric g is Q-invariant
implies that divdVQ = 0, which means that the volume element on � constructed using the
Q-invariant metric is also Q-invariant. Thus, it is easy to see that the following is true:

∂

∂λ

∫
�

dV · f e−λQσ = −
∫
�

dVQ(f e−λQσ ) = 0. (4)

Let {Um}m∈I be a finite atlas of � and {hm}m∈I a partition of unity on � subordinate to this
atlas. Suppose also that the atlas is chosen to satisfy the following two conditions:

(i) if Uk
⋂
RQ2 �= ∅, k ∈ I, then Uk

⋂
RQ2 �= ∅;

(ii) if Uk
⋂
RQ2 �= ∅ then the critical set of Qσ |Uk is just Uk

⋂
RQ2 .

Using (4) one can rewrite an expression for the integral of f over � as follows:∫
�

dVf = lim
λ→∞

∫
�

dVf e−λ〈Q2,Q2〉

=
∑
m∈I

lim
λ→∞

∫
Um

dVhmf e−λ〈Q2,Q2〉.

Let m(Q2) denote the number part of the vector field Q2 and Rm(Q2) ⊂ � the zero locus
of m(Q2). Let us choose k ∈ I : Uk

⋂
RQ2 = ∅. Then Uk

⋂
Rm(Q2) = ∅. As a consequence

of (i) the number part of 〈Q2,Q2〉 is positive at each point of Uk, so one can find such positive
constants c1 and c2 that∣∣∣∣

∫
Uk

dVhkf e−λ〈Q2,Q2〉
∣∣∣∣ � c1λ

ne−c2λ → 0 as λ → ∞.

Thus we conclude that∫
�

dVf =
∑

{k∈I |Uk
⋂
RQ2 �=∅}

lim
λ→∞

∫
Uk

dVhkf e−λ〈Q2,Q2〉. (5)

The integrals on the right-hand side of (5) can be calculated using the Laplace method
adapted to include integrals over superspaces (see e.g. [6]). Under the condition that the odd
codimension of RQ2 ⊂ � is equal to its even codimension, we obtain that

lim
λ→∞

∫
Uk

dV hkf e−λ〈Q2,Q2〉 =
∫
Uk
⋂
R
Q2

dvQ(hkf )|Uk⋂RQ2 (6)

where dvQ is the volume element on Uk
⋂
RQ2 defined as a partition function of degenerate

functional Qσ |Uk (see [6], lemma 2). By (5) Qσ depends on Q and g only, so does dvQ. It
remains to note that the set {hk|R

Q2 }{k∈I |Uk⋂RQ2 �=∅} provides one with the partition of unity
on RQ2 . Therefore, substituting (6) into (5) and using the definition of the integral over a
(super)manifold, we see that∫

�

dV · f =
∫
R
Q2

dvQ · f |R
Q2 .

The theorem is proved. �
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Corollary. If RQ2 = RQ the theorem implies the localization of corresponding integrals over
� in the sense of definition (1).

Note that the statement of the above theorem can be formally justified in the case when�
is an infinite-dimensional manifold. For example, � can be realized as a space of maps from
a world sheet to a target manifold of some quantum field theory. This suggests that there are
possible applications of the above theorem which are different from those we consider below.

Finally, let us remark that if RQ2 �= RQ one can still prove the localization of the integrals
under consideration to RQ. The proof will consist of two steps: first, one repeats the above
arguments to prove the localization to RQ2 ; second, one notes that the vector field Q generates
a nilpotent vector field on RQ2 and f |R

Q2 is invariant with respect to this vector field. The
corresponding integral is localized to RQ (see e.g. [8, 12]).

2. Derivation of the main result

Let � be a compact supermanifold. Suppose that Q is an odd vector field on �. We always
assume that the zero locus RQ of the vector field Q is a submanifold of � and that Q is
non-degenerate in the neighbourhood of RQ. Let dV be a fixed Q-invariant volume element
on �. Assume that Q satisfies the localization conditions, i.e. (1) holds for any Q-invariant
function f on �. Let M be another supermanifold. To avoid irrelevant technicalities, we
suppose that M is diffeomorphic to a linear superspace. Denote by E the (super)space of maps
from� to M. Naturally, an action of Q on� generates an infinitesimal diffeomorphism of the
space of maps:

	 → 	 + εQ	 (7)

where	 ∈ E and ε is an odd parameter. We will use the notation Q̂ for the vector field on E
corresponding to (7).

Next let us impose an additional condition on Q which will be crucial for further
considerations. Namely, we will assume that the following Cauchy problem has a solution:

Q	 = 0 (8)

	RQ = 	0 (9)

where 	0 is any map from RQ to M. In other words, we require that any map RQ → M can
be continued to the Q-invariant map � → M . In all interesting cases, the problem (8), (9)
has a lot of solutions. We suppose that the space of solutions of (8) corresponding to a fixed
initial condition (9) is contractible.

Consider now a quantum field theory defined on �. Let L(	, ∂	),	 ∈ E, be a
corresponding quantum Lagrangian. The word ‘quantum’ means that having started from
classical field theory we fixed gauge-like symmetries of the classical Lagrangian using some
quantization procedure (BV for example, see [1]) and arrived at the expression for L(	, ∂	)
where 	 is a map from � to the manifold M of both physical and auxiliary fields such as
ghosts, antifields, etc. Therefore the corresponding action functional is non-degenerate, i.e.
the linear integral operator in T	(E) with the kernel δ2S

δ	i (x)	j (y)
has no zero eigenvectors for

any	 ∈ E. Here x, y ∈ � and a choice of local coordinates in M is assumed.
The main condition imposed on the quantum field theory at hand is Q̂-invariance. Namely,

we suppose that

L(	 + εQ	, ∂(	 + εQ	)) = L(	, ∂	) + εQL(	, ∂	). (10)
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The fact that the action S = ∫
�

dVL is Q̂-invariant follows then from (10) and the Q-invariance
of the volume element dV .

There is a simple construction generating a lot of models satisfying (10). Let hn be a
multivector field of rank n on �. Introducing local coordinates {zα} on � one can present hn
in the following form:

hn = hα1α2...αn
n (z)

∂

∂zα1
⊗ ∂

∂zα2
⊗ · · · ⊗ ∂

∂zαn
.

Using a multivector field hn and a map 	 : � → M one can construct a map h∗n from � to
the nth tensor power of the tangent bundle TM over M. Choosing local coordinates both in �
and in M one can present it as follows:

h∗n (z) = hα1α2···αn
n (p)

∂	i1

∂zα1

∂	i2

∂zα2
· · · ∂	

in

∂zα2

≡ hn(	
i1 ×	i2 × · · · ×	in)(z). (11)

Suppose now that hn is Q-invariant, i.e. LQhn = 0, where LQ is a Lie derivative with
respect to the vector field Q. Then it is easy to see

εQ(hn(	× · · · ×	)) = hn((	 + εQ	)× · · · × (	 + εQ	))− hn(	× · · · ×	). (12)

Suppose finally that the derivatives of 	 enter the Lagrangian only in the form of
combinations (11), where hn is a Q-invariant multivector field. Then in virtue of (12) relation
(10) is satisfied and the corresponding action functional is Q̂-invariant.

Let us illustrate the above considerations with the following example. Take g to be a
Q-invariant metric on �. Then the following model is Q̂-invariant:

S =
∫
�

dV
(
gαβ∂α	

i∂β	
jGij (	) + V (	)

)
. (13)

Here gαβ is a Q-invariant multivector field of rank 2 inverse to the metric tensor gαβ and Gij

is a metric tensor on M. Note that (10) constitutes a natural non-linear generalization of the
Parisi–Sourlas model [5].

Now we are able to formulate the main result of the paper. The Q-invariant (Schwinger)
correlation functions of the theory described above have the following generating functional:

Z[J ] =
∫

[D	]E exp

(
iβ

(
S[	] +

∫
�

dV Ji(p)	i(p)

))
(14)

where {Ji} are Q-invariant functions on � playing the role of sources, [D	]E is a formal
measure on the space of maps E and β is a coupling constant.

By means of formal manipulations with functional integrals, we are going to show that
under the conditions on Q and S[	] the generating functional (14) can be rewritten as follows:

Z[J ] =
∫

[D	]EQ exp

(
iβ

(
S[	 |RQ] +

∫
RQ

dvQJi(p)	i(p) |RQ
))

. (15)

Here EQ denotes the space of maps from RQ to M, [D	]EQ is a measure on EQ; the new
action functional is

S[	|RQ] =
∫
RQ

dvQL
(
	|RQ, ∂ ′	|RQ, 0

)
(16)

where the new Lagrangian is obtained from the old one by restricting the fields to RQ and
setting the derivatives of the fields in the directions transversal to RQ equal to 0. We also used
the symbol ∂ ′ to denote the derivatives along RQ.
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Equation (15) states the equivalence between the Q-invariant sector of the initial theory
and the theory determined by the action functional (16) defined on the submanifold of the
initial source manifold �. According to the adopted terminology, dimensional reduction
occurs.

Note that in the case when RQ is zero dimensional, the rhs of (15) reduces to a finite-
dimensional integral, which means an exact solvability of the Q-invariant sector of the theory
we have started with. We also see that in the situation when Q happens to have no zeros at
all the Q-invariant sector is trivial which yields a set of Ward identities for the correlation
functions of the initial theory.

To demonstrate the equality between (14) and (15) let us consider first the subset RQ

of E consisting of Q-invariant maps from � to M. The space RQ is foliated by means of
the following equivalence relation: two Q-invariant maps 	,	′ ∈ RQ belong to the same
fibre of the foliation iff 	|RQ = 	′|RQ ; in other words 	 and 	′ are equivalent if they
determine the same element of EQ = {RQ → M}. Consider a section of such foliation—a
map 	̃ : EQ → RQ which assigns to each element of EQ a unique element of RQ. In other
words, we set a rule which singles out one and only one solution to the problem (8), (9) for
each	0 = 	RQ . Such section exists due to the stated assumptions about the space of solutions
of the problem (8), (9). Consider now the following functional on E:

F [	] =
∫
�

dVGij (	)
(
	i − 	̃(	0)

i
) (
	j − 	̃(	0)

j
)
. (17)

Clearly, Q̂F [	] = 0. Using (17) we introduce the following deformation of the generating
functional (13):

Zλ [J ] =
∫

[D	]E exp

(
iβ

(
S[	] +

∫
�

dV Ji	i + λF [	]

))
. (18)

Note that Z[J ] = Z0 [J ]. Let us show that Zλ[J ] is in fact independent of λ:

∂

∂λ
lnZλ[J ] = iβ

∫
�

dV 〈F [	(p)]〉λ,J (19)

where 〈 〉λ,J denotes the average with respect to the ‘action’ functional—an argument of
exponent in (18). A correlator 〈F [	(p)]〉λ,J can be considered as a function on �. It
follows from (17) that the restriction of this function to RQ is zero. Moreover, this
function is Q-invariant as a consequence of the Q-symmetry of the problem. Really,
Q〈F [	]〉λ,J = 〈Q̂F [	]〉λ,J = 0. The last equality can be regarded as a Ward identity
corresponding to the Q-invariance of the vacuum of the theory at hand. Thus the rhs of (19) is
an integral over � of a Q-invariant function equal to zero on zero locus RQ of Q. Therefore,
it is equal to 0 in virtue of localization condition (1).

So, Zλ [J ] is independent of λ. Thus one can compute the generating function Z[J ] as
follows:

Z[J ] = lim
λ→∞

Zλ[J ]. (20)

One can rewrite the rhs of (18) in the following form:

Z[J ] = lim
λ→∞

∫
[D	0]EQ

∫
{	RQ=	0}

[D	]E exp

(
iβ

(
S[	] +

∫
�

dV Ji	
i + λF [	]

))
. (21)

In the limit λ → ∞ the internal integral in (21) localizes to the critical points of the functional
S[	] +

∫
�

dV +
∫
�

dV Ji	i + λF [	] which is defined on the space of maps having a fixed
restriction to RQ. It follows from the Q-invariance of this functional that one of these critical
points is 	 = 	̃(	0) (see [7] for a proof in the even case). It can be shown under very
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general assumptions on S[	] that 	 = 	̃(	0) is the only extremum contributing to (21) in
the limit λ → ∞. The contribution can be calculated using an infinite-dimensional version of
the stationary phase method. As a result, we obtain the following answer for the generating
functional (14):

Z[J ] =
∫

[D	0]EQ exp

(
−βS[	̃(	0)] +

∫
�

dV Ji	̃(	0)
i

)
(22)

where we absorbed the determinants which appeared as a result of computation of
corresponding Gaussian integrals into the redefinition of the functional measure on EQ. But
now we note that by virtue of (10)

QL(	̃(	0), ∂	̃(	0)) = 0

therefore the integral S[	̃(	0)] = ∫
�
L(	̃(	0), ∂	̃(	0)) localizes to the zero locus of the

vector field Q. It also follows from the non-degeneracy of Q in the vicinity of RQ that
∂⊥	̃(	0)|RQ = 0. This remark together with localization condition (1) permits us to conclude
that

S[	̃(	0)] =
∫
RQ

dvQL (	0, ∂
′	0, 0). (23)

The same localization arguments work for the source term as we have chosen the functions J
to be Q-invariant. Substituting (23) into (21) we arrive at expression (15) for the generating
functional of the reduced theory.

The way we established the equality between (14) and (15) is somewhat naive in the sense
that the result was achieved by means of formal manipulations with the path integral without
addressing the questions of proper renormalization of the loop expansion arriving. Our results
only suggest the possibility of the phenomenon considered; an additional analysis is required
in each particular case.

Keeping up with the level of generality adopted for the present section, we can discuss
the relation between instanton sectors in the original and the reduced theory. Suppose that	0

is an extremum of the action functional Sred[	] of the reduced theory, 	 : RQ → M . Let
	̃(	0) ∈ {� → M} be a Q-invariant map such that its restriction to RQ ⊂ � coincides with
	0. Then 	̃ is an extremum of the action functional S[	] of the original theory. The proof of
this statement is based on the Q̂-symmetry of S[	] and goes along the same lines as its even
counterpart (see [7]). Conversely, any Q-invariant extremum of the original theory produces a
solution to the equations of motion of the reduced theory by means of restriction. Moreover,
any two Q-invariant extrema 	̃ and 	̃′ of S[	] give rise to the same extremum of Sred[	]
given that their restrictions to RQ coincide, 	̃RQ = 	̃′

RQ
. Note also that S[	̃] = S[	̃′] in

virtue of the assumed localization of integrals over � with Q-invariant integrals. Thus, we
established a one-to-one correspondence between instantons of the reduced theory and critical
submanifolds of E consisting of Q-invariant instantons of the original theory having a given
restriction to Q. It follows from above that such BPS-like solutions completely determine the
instantons contribution to the Q-invariant sector of the original theory. Really, if we suppose
for example that the instantons 	q of the reduced theory are isolated and classified by an
integer q, then by virtue of equality (15) the instanton contribution to the partition function of
the original (Wick rotated) theory is equal to

∑
q

e−βSred[	q ]√
det Hess(Sred[	q])

(24)

and is clearly determined by Q-invariant extrema only.
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Our conclusions concerning the dimensional reduction of supersymmetric field theories
generalize and provide the geometrical understanding of the results of [2]. The cited paper
contains the first non-perturbative proof of the dimensional reduction of the Parisi–Sourlas
model and describes the relation between instanton sectors of the Parisi–Sourlas model on a
linear (3, 2) space and its reduction which is a bosonic theory in dimension 1.

3. Applications and conclusions

Now we would like to explain the relation of the Parisi–Sourlas model to the above discussion.
Consider a supermanifold � = B × R(2,2), where B is a (super)manifold. Let M be a

linear superspace. Let us choose local coordinates {xi, yα, θ, θ} on �, where {xi} is a set
of local coordinates on B, {yα, θ, θ} are even and odd coordinates on R(2,2). Let h be a
Riemannian metric on the manifold B. Then a metric on � can be defined by means of the
following quadratic form:

g = hij (x)δx
iδxj +

∑
α

δyαδyα + 2δθδθ. (25)

Consider the following σ -model having � as a source manifold:

Z[β] =
∫

[d	]E eiβS[	] (26)

S[	] =
∫
�

dV (g−1(	I ,	J )GIJ (	) + V (	)) (27)

where E = {� → M}, 	 ∈ E; g−1 is a bivector field on � inverse to the quadratic form

(25). In components	I = φI +ψI θ +ψ
I
θ +AIθθ . It follows from the results of [5] that the

model (26), (27) can be viewed as a result of stochastic quantization of a σ -model defined on
the space of maps {B × R(2,0) → M}. The corresponding action functional is

S[φ] =
∫
�0

dV

((
hij
∂φI

∂xi

∂φJ

∂xj
+
∑
α

∂φI

∂yα

∂φJ

∂yα

)
GIJ (	) + V (φ)

)
. (28)

In such an interpretation, we consider only the following correlation functions of the model
(26), (27):

〈
	I1

∣∣
B

· · ·	Ik
∣∣
B

〉
. It is easy to check that the metric form (25) is invariant with

respect to the following odd vector field on �:

Q = θ
∂

∂y1
+ θ

∂

∂y2
+ y2 ∂

∂θ
− y1 ∂

∂θ
. (29)

This vector field satisfies all conditions of the corollary and the theorem which yields the
integration formula (1) for the integrals of Q-invariant functions over �.

Consider the Q-invariant sector of the model (26), (27). This sector describes in particular
stochastic correlation functions of the model (28). The results of the previous section suggest
that this sector is equivalent to the following model defined on the manifold B:

Z[β] =
∫

[dφ]EBeiS[φ] (30)

S[φ] =
∫
B

dv
(
gij ∂iφ

I ∂jφJGIJ (φ) + V (φ)
)

(31)

where EB = {B → M} and φ ∈ EB and dv corresponds to the metric h on B. This conclusion
agrees with corresponding statements about dimensional reduction of the original Parisi–
Sourlas model and its modifications considered in [4].
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Let us note that all results of the present section can be generalized to the case when � is
a total space of a flat (m,m)-bundle over the base B.

We would like to conclude with the following remark. Standard applications of
localization techniques to quantum field theory deal with localization of integrals over target
spaces. This leads to well-known cases of exactness of semiclassical limits in topological
and integrable quantum field theories, see [11] for more information. Our work shows that
localization of integrals over world sheets of supersymmetric field theories leads to dimensional
reductions of the latter. This allows us to put the Parisi–Sourlas work in the general perspective
of the theory of localization.
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